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Generalized TLM Algorithms with Controlled
Stability Margin and Their Equivalence with
Finite-Difference Formulations for Modified Grids

Malgorzata Celuch-Marcysiak and Wojciech K. Gwarek, Senior Member, IEEE —

Abstract— Generalized TLM formulations based on modified
grids of 2-D shunt nedes or 3-D expanded nodes are proposed.
Generalization consists of permitting flexible control of the nu-
merical stability margin (and thus a time-step for a particular
discretization), and of introdacing enhanced models for curved
boundaries. Formal equivalence between generalized TLM and
FDTD algorithms based on the same grids is proved. Simple
rules for transforming circuit models (from TLM to FDTD and
vice versa) and for their equivalent excitation are given. It is
demonstrated that the application of the generalized algorithm
reduces computer resources required for the TLM analysis of a
circular waveguide by an order of magnitude.

1. INTRODUCTION

HE TLM method is widely used for the modeling of

microwave structures. In the classical TLM approach
to homogeneous problems, the propagation velocity along
each transmission line (;v) is chosen to exceed the physical
wave velocity in the modeled medium (v) by a factor of r,
with ¥ = /2 in a 2-D mesh of shunt nodes and r = 2
in a 3-D mesh of expanded nodes. Thus, for a particular
discretization of space «a, the simulation time-step is stiffly
set to At = a/;v = a/(rv). In this regard, as noted by several
authors [1], [2], more flexibility exists in the FDTD method
where the time-step can be controlled by the user.

The first versions of TLM were based on a regular Cartesian
grid with a crude staircase approximation of boundaries.
Subsequently, other grids have also been utilized. and these
can be divided into two categories:

1) rectilinear orthogonal grids with cell dimensions variable
as Az = Az(z), Ay = Ayly), Az = Az(z); to this
category we assign the early technique by Johns [3],
the various variable mesh techniques [1], [4] and the
recursive algorithm [5];

2) regular grids but in non-Cartesian coordinate systems,;
this category includes curvilinear orthogonal (e.g., ra-
dial) grids [4], [7] and triangular grids [8].

In comparison with the regular Cartesian gridding, the grids
of Categories | and 2 improve the TLM modeling of many
microwave circuits, but they also maintain some limitations. In
particular, the grids of Category 1 do not provide the tangential
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and normal field components for the rigorous specification
of boundary conditions at oblique boundaries. The grids of
Category 2 are perfectly suited for a narrow class of circuits
with all boundaries described by a constant function in one
coordinate system. Thus in practical microwave problems of
complicated geometry, it often becomes necessary to refine the
overall discretization which leads to excessive requirements of
computer resources.

Our work addresses these limitations of classical TI.LM, and
proposes original techniques for:

1) controlling factor r introduced above—which has a
mathematical interpretation of controlling a stability
margin and a physical interpretation of controlling the
simulation time-step.

2) improving the representation of arbitrary curved bound-
aries through the introduction of locally modified grids.

In the MTT-S paper [9], we approached the problem of
the controlled stability margin by developing the complete
dispersion relations for the stub-loaded TLM, which required
cumbersome arithmetic. The new boundary model was es-
tablished by incorporating local integral approximations into
TLM [9]. A unified approach to both problems presented
herein is substantially more general and effective.

We shall first postulate the existence of the generalized
TLM algorithms based on modified grids. We shall conduct
a formal proof of their equivalence with FDTD algorithms
(based on the same grids), and derive simple rules for trans-
formation between the FDTD and TLM models. These rules
enable immediate formulation of the TLM algorithms with
controlled stability margin and with flexible representation of
curved boundaries, originally proposed for FDTD [10], [11]. In
derivations we shall concentrate on 2-I) problems. Conclusions
will be directly extended to the 3-D expanded node (ExpN)
which is a combination of the 2-D shunt and series nodes.

In the final example of a circular waveguide, we relate
our generalized TLM formulations based on modified grids
to classical FDTD and TLM, and to nonorthogonal FDTD
of [12]. To our knowledge, this is the first in the literature
comparison of accuracy of the locally and globally irregular
grids for the time-domain modeling.

II. GENERALIZED TLM ALGORITHMS

Consider an arbitrarily shaped 2-D circuit of Fig. 1(a). Its
boundaries can be short, open, or resistive (which provides
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Fig. 1. (a) An arbitrarily shaped 2-D microwave circuit; (b), its TLM model

proposed herein, (¢) and an equivalent FDTD model.

in particular a narrow band model of a matched termination
or a lossy metal surface [6]). Upon this circuit we impose
a fundamentally orthogonal grid with possible use of variable
mesh techniques, and we match the curved boundary by means
of modified nonrectangular cells [Fig. 1(a)].

Generalizing the classical TLM approach and our recent
contribution [9], we claim that the circuit of Fig. 1(a) can be
modeled by a matrix of transmission lines shown in Fig. 1(b).
In the matrix we distinguish two types of lines (branches):
link lines and stubs. Consider node N with total number
N, of incident branches of any types and any characteristic
admittances ,Yn. A pulse } W . scattered into branch b at time
instant kAt is calculated as
k- v

VA = uk b=1,, N, (1)

TEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 43, NO 9, SEPTEMBER 1995

where ;JVJ(“, is the incident pulse and ’”5\' denotes nodal voltage
defined as

Ny
2
A s 117k
Uy = b}NbVN' (2)
Eb WwYN ;

In (1), (2) and further in the paper, subscripts refer to nodes,
prescripts, to branches, and superscripts, to time instants.

If the TLM simulation is conducted with time-step At, then
each link branch introduces a propagation delay of At and each
stub —A¢/2. Thus, the connection equations take the form

VAT = v 3)

it = vk 4)

for link branch [ connecting nodes A" and M, and

ka+1 [VN (5)
zvk+1 ’I‘“/N (6)
L VER =0 7
m'N ( )

. R. Yy —
VT = Ere T ®

for open (p). short {s), matched (/) and resistively terminated
(r) stubs at node N, respectively.

In the classical TLM modeling, link branches are parallel
to the coordinate axes. Their different characteristic admit-
tances result from inhomogeneous permeability or variable
dimensions of cells [1]. Stubs have the following meaning:

* open stubs p model inhomogeneous permittivity or mag-
netic boundary.

* short stubs s model electric boundaries (in 3-D, short
stubs at series nodes also model inhomogeneous perme-
ability),

* matched stubs m model dielectric losses,

* resistively terminated stubs » model resistive boundaries
or an actual lumped element incorporated into the circuit.

Our generalization consists in allowing that:

1) link branches can be placed obliquely in the matrix, in
order to model the flow of the current tangential to the
open boundary [} in Fig. 1(b)],

2) double-node cells can be used to represent the curved
electric boundary (7 in Fig. 1),

3) additional open stubs (in 3-D, also short stubs) can be
used to control a stability margin and thus a time-step
of the algorithm.

These extensions to classical TLM will be explained in the
following sections, via the equivalence with the FDTD for-
mulations.
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III. EQUIVALENCE OF TLM AND FDTD
FORMULATIONS FOR MODIFIED GRIDS

Equations (1)~(8) applied to a model of Fig. 1(b) with
chosen initial conditions describe the TLM simulation of fields
in the circuit of Fig. 1(a). We will prove that a formally
equivalent simulation can be conducted in the FDTD method.
By formal equivalence, we mean that with the use of infinitely
precise computer arithmetic, both methods would provide
identical field values at any time instant and at any location.

In this work, we shall not compare the numerical robustness
of FDTD and TLM with respect to the computer round-off
errors. This topic has been briefly addressed in [13], and it
is worth further systematic research. However, our experience
shows that in typical microwave problems the two methods are
immune to computer round-off errors. even if single precision
arithmetic is used [14]. Therefore, their formal equivalence is
a concept of practical as well as cognitive importance.

Criteria for formal equivalence of the TLM and FDTD
methods concern two aspects: equivalent transformation of the
model and equivalent transformation of the initial conditions.
We shall discuss the two aspects separately. In the discussion
we shall refer to the FDTD notation introduced in [10]. This
notation uses auxiliary variables: voltage and currents. Voltage
is defined as

uz/Ezdz=Ezh )

where h is the height of a planar circuit. Surface current
density 1s related to the transverse H-field by

jo =, xH,. (10)
Current flowing between two nodes is the integral of 7, along
the common side of respective two cells, for example [c.f.,

Fig. 1(c)]
(11)

The FDTD model is a network of nodal capacitances and
branch inductances [10]. The effects of inhomogeneous filling
and variable dimensions of cells are described by modified
values of Cx and , L. The value of @ in the FDTD equations
denotes a fundamental cell size in the model (which is not
necessarily the smallest size).

11 = 1jmb.

A. Equivalent Transformation of the Model

Equivalent transformation of the TLM model of Fig. 1(b)
into the FDTD model of Fig. 1(c) is governed by the following
criteria

1) At each node A with incident Nj link branches I, N,

open branches p, N, short branches s, N, resistively
loaded branches r and N,,, matched branches m we place
capacitance C'n such that

At
C’Na

2

= (12)
S YN+ N YN N Y+ T Yy

2083
and conductance G such that
N
Gy = ZmYN. (13)
m=1

2) Each link branch of characteristic admittance ;Y 1is
replaced by inductance ;L such that

At

Z_L_a =Y. (14)

3) Open branches are neglected (their influence is included
in (12)).

4) Each branch .Y ended with resistance R or short-ended
(R = 0) is replaced by inductance , L

At 2.Y

= A 1
Lo  14+.YR (13)

while at the resistive end we place an auxiliary node A/
where at the nodal voltage up+ is explicitly defined by

uk, = —R, k705 (16)

and ,.in denotes current flowing out of R, towards V.
Formal proof of the equivalence of this transformation is given
in the Appendix.

Let us now extend the discussion to the 3-D ExpN modeling.
At shunt nodes criteria (12), (13), (15), and (16) (and the
associated steps 1, 3 of the proof) remain valid. At series
nodes, dual reasoning can be applied. Normally, incident at
series node M are M; link branches and M, short stubs. In

the FDTD model, at node M we locate nodal inductance L s
defined as

At 2
le\illlZJU + Z?ﬁlszkl

and we peglect short branches.

a7

L]ua B

B. Equivalent Modeling of Initial Conditions

In the FDTD method, initial conditions must be given for
nodal voltages at k& = 0 and branch currents at & = —0.5. In
TLM, initial conditions are completely defined by the values
of all incident pulses in the model at a single time instant
k = 0. Physically, this corresponds to enforcing the values
of both voltage and current in the middle of each branch at
k = —0.5. Thus at first sight it seems that FDTD and TLM
cannot be excited in the same way, and this point has been
raised in previous comparisons of the two methods [15]. We
will now resolve such doubts by showing that any excitation in
TLM has an equivalent in FDTD. By “equivalent excitation”
we understand such a definition of initial voltages and currents
in FDTD, and of initial incident pulses in TLM which 1esult
in identical field values obtained with the two methods at any
location and at any time instant £ > 0. We shall refer to the
initial TLM excitation from one branch by a single delta pulse,
remembering that any other excitation waveform consists of
a train of pulses, and our conclusions will apply by virtue of
superposition.



2084

N
\ pxc Y0

IJ,(t)

(a)

Vi
C,

”I ]Jp(t)

(b)

#H_ EO® sL

Jp(t)I ]:
©

Fig. 2. Excitation schemes for TLM and FDTD applied to the cir-

cuit of Fig. 1, (@) TLM excitation of node A from current source:
Jr(t) = 26(t + 0.5At), (b) FDTD excitation equivalent to (a):
Jr(t) = 2[6(t + 0.5At) 4 6(t — 0.5At)], (¢) FDTD excitation of

node A" from branch 5L, equivalent to TLM excitation by gVIQ, = 1:
E(t) = 6(t + At). Jp(t) = 6(t + 0.5A¢2).

TABLE 1
NODAL VOLTAGES AND BRANCH CURRENTS OBTAINED FOR THE CIRCUIT OF FIG.
1 BY BoTH TLM AND FDTD, A5 A RESULT OF EXCITATIONS OF FiG. 2(a) AND FiG.
2(b), RESPECTIVELY. CONSIDERED ARE MODELS OF FIG 1(b) AND FiG. l(c) WITH

- i _
b} L ap L_1 c¥n= C’}JU—C’YQ 0, aC‘N_'aC”N_aC‘N_Z

k Uy Uy Y s’y <y
-0 5 0 00 0 00

o] 1.00 0.00 0.00

a5 -1 00 -2.00

1 0 00 0 50 0 50

15 -0 50 -2.00

2 -1 50 0 25 -0 25

First, we consider the excitation of node A of Fig. 1
from the ideal cutrent source connected by an additional stub
excY = 0 [Fig. 2(a)]. All other incident pulses at k = 0 are set
to zero. Clearly, the excitation stub does not influence further
analysis. The values of selected voltages and currents in the
circuit of Fig. 1, as produced by TLM at the beginning of the
simulation, are given in Table I.

The same sequence of nodal voltages and branch currents
(Table I) is produced by FDTD if the excitation scheme of Fig.
2(b) is incorporated. This means that for the equivalence with
TLM, in the FDTD modeling the same delta pulse excitation
must be applied to node A at k& = 0 and repeated at k = 1.
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Let us consider what happens if both TLM and FDTD are
excited by a single pulse at k¥ = 0. We denote by Urrm(?)
and Urprn(t) signals detected at a particular location in the
circuit (for example voltage at node A). In view of the above
discussion, UTLM(t) = UrpTD (t) + Urprp(t — At) and the
following relation between their effective spectra holds

|F[UrLm(t)]] = | F[UrpTn(t) + UsDTD(t — AL)]|
= |F[Urprp(t)]] © |1+ exp (—j2I1fAl)]
= |~7:[UFDTD(7‘5)]| [ |COS (HfA?f” (18)

From this follows an interesting conclusion that a single pulse
excitation in TLM produces signals of cosinusoidally modu-
lated spectra, with respect to signal s produced in FDTD by the
same single pulse source. In some circuits strong resonances
can be grouped above the frequency band of interest, at
frequencies approaching the Nyquist point fry = 1/(2At).
With all excited signals having modulated spectra of the form
(18), the effect of numerical “ringing” at these resonances is
diminished, and consequently the convergence of calculations
improves [14]. This may explain better convergence of TL.M
reported in examples using a single pulse excitation in both
TLM and FDTD [15], [16]. Naturally, equivalent excitation
models as specified above provide identical convergence of
FDTD and TLM.

An alternative TLM excitation is by a pulse incident from
one of the link lines, for example from line 5Y» at one node
N of Fig. 1. An FDTD equivalent again comprises a two-pulse
excitation, applied to branch current at £ = —0.5 and to nodal
voltage at £ = 0 [Fig. 2(c)].

C. Consequences of Formal Equivalence

In view of formal equivalence, the TLM and FDTD meth-
ods exhibit identical properties in terms of stability, energy
conservation, and flexibility in the modeling of irregular
geometries. Therefore by direct transformation from FDTD,
techniques for controlling the stability margin and improving
the curved boundary representation will be incorporated into
TLM.

D. A Spurious TLM Mode and Its Effect on
Formal Equivalence with FDTD

As a consequence of using more variables, the TLM method
has more eigenvalues than FDTD, and it emulates spurious
modes which do not exist in FDTD. In a previous paper [17]
we have shown that the TLM spurious modes are described by
the dispersion term sin (211 fA¢) = 0, thus they are supported
at f = 1/(2At). However. the TLM spurious modes do not
violate formal equivalence with FDTD. They are characterized
by zero nodal voltages and zero branch currents which are
our variables of interest. Furthermore, they are nonpropagating
modes and cause the oscillations of branch voltages only where
specifically excited. We have established these properties by
examining the complete TLM characteristic equation given
in [9].
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IV. CONTROLLED STABILITY MARGIN IN TLM

Consider a homogeneous region of space covered by a
Cartesian grid of cell size a. We construct its 2-D TLM model
with link branches ;Y and open stubs Y. In a 3-D TLM
model we additionally admit short stubs ;7 at series nodes.
All parameters Y, ¢V, Z as well as L, C in FDTD are
constant throughout the model.

For the FDTD solutions, the numerical dispersion relations
have been investigated by several authors [2], [14], [18]. A
fundamental parameter of these relations is a stability factor
r defined as

Q—GCEE—[ﬁﬂ% (19)

TTAA T v

The FDTD calculations are stable [2], [14], [18], and [19] and
numerical energy is conserved [19], [20] in 2-D if 7 > /2,
and in 3-D if 7 > /3. By a stability margin of the algorithm
we shall understand the interval (v/2, ) in 2-D and (v/3, )
in 3-D.

Note that (19) is consistent with the definition of factor r
proposed for TLM in the introduction since

r=2t - L (20)
v
Applying equivalence criteria (12), (14) we can express a

stability factor in terms of characteristic admittances of the
TLM branches in 2-D

4Y +cY 1 1 Y
2 b C C
=27 v - =1. 1
T 5 ¥ "3 [4 + bY:| (21a)
In 3-D, we apply criteria (12), (17)
4Y + Y 4+,YZ 1 Y
2 b c b L C
= == ld+ =4+ Y 7]
r 2 %Y J+JMHL]
(21b)

Expressions for r identical to (21) have been originally ob-
tained in our MTT-S paper [9] by cumbersome trigonometric
transformations of the TLM dispersion relations for the 3-D
model with stubs. In previous papers, only the 2-D stub-
loaded TLM model has been considered [2], and conclusions
concerning the possibility to control the time-step have not
been drawn.
Based on (21), we draw the following conclusions:

1) We confirm that classical TLM without stubs (¢} =
0, L7 = 0) is operated in 2-D at 7 = +/2 and in 3-D
at r = 2.

2) In 2-D and 3-D TLM, it is possible to increase a stability
margin through the use of positive stubs. Thereby we
obtain a family r* of TLM algorithms, discussed in the
following section.

3) Using negative stubs. we can formulate a family r~
of stable 3-D TLM algorithms with decreased stability
margin (v3 < r < 2).

Let us first consider the TLM algorithms of family r~.
Compared with classical 3-D ExpN TLM, they exhibit two
advantages:
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TABLE II
ERRORS IN CALCULATING EIGENFREQUENCIES OF A
14x14%x20 MM Cavity wiTH 3-D TLM (¢ =2 mm)

= v =
mode | f h[GHZ] rEvs r=2
? sf [%] | af [u]
101 13.078 -0 21 -0 31
110 15 152 ~0 24 -0.38
111 16 907 -0 04 -0 21

* numerical dispersion errors decrease as in the FDTD
method [2], [14], and [18],

* simulation can be conducted with the time-step prolonged
by a factor of 2/v/3, thus the total number of iterations
is reduced by up to 13%.

A limitation of the r~ algorithms is that they permit the mod-
eling of electric walls only through the planes where tangential
electric fields are defined, and of magnetic walls through
the planes where tangential magnetic fields are defined. This
limitation follows from the range of elements admitted in
constructing the TLM model. Thus the r~ algorithms are
suitable for circuits of fairly regular geometry.

In Table II we show eigenfrequencies of a 14x14x20 mm
cavity calculated by standard TLM (r = 2) and r~ TLM
(r = V/3). For both algorithms we have used the same cell
size & = 2 mm and the same scheme for initial excitation
and parameter extraction, as introduced in [21]. This scheme
is based on incorporating an auxiliary lossy voltage source
and detecting the eigenfrequencies as minima of the discrete
Fourier transform of the input current [21]. Note that the
version with 7 = /3 remains stable despite the use of negative
stubs (3Y = 1, 1Z = 0, ¢Y = —1), and it provides more
accurate results (Table II).

V. IMPROVED TLM MODELING OF CURVED BOUNDARIES

Algorithms of family v+ enforce an extra stability margin
into the TLM method. This margin can serve to accommodate
improved models of arbitrarily shaped boundaries. In the 2-
D FDTD method, a very flexible model as in Fig. 1(c) has
been developed for open [10] and short [11] boundaries.
Parameters L, C of this model are obtained by assuming local
quasistatic field distribution over each cell. Consequently, L, '
have the physical meaning of quasistatic inductances between
nodes, and quasistatic capacitances of cells [10]. Applying the
equivalence criteria, we can immediately transform this FDTD
model into the TLM model of Fig. 1(b).

Let us assume that in regions covered by a regular square
grid, standard values of ;L and Cjp; in FDTD are chosen so
that

At
— =1 (22
abL )
At 1
= e (23
aCM 7‘2 ) )

where r is the desired stability factor; relations (22), (23)
satisfy (19).
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Applying the branch equivalence criterion (14), we obtain
characteristic admittance of standard link lines as
pY = 1. 24)

Between distorted cells, quasi-static inductance is modified
which results in modified branch admittance, for example

At b
= -V =2 25
ol = u (25)
At a
AR Fi (26)

A unique feature of our model is that it contains oblique
branches which allow for the flow of a current tangential to
the open boundary, such as 4L, 4Y

At _ o
a2

asl
In this way, all link branches and stubs perpendicular to the
boundaries in Fig. 1(b) are defined. Finally, the nodal equiv-
alence criterion (12) is applied to define permittivity/stability
stubs. For regular cell M we have

27

At _ 2 _ 2 . 28)
aCrr 26Y +pYar +sYar + Y &Y +cYu
Taking into account (23), (24)
cYar =2r° — 4. (29)
At other nodes we obtain for example
cYp =2r2Sp — 2+ 4Y + Y] (30)

where Sp denotes cell area normalized to standard cell area a2.
The value of » = 2 is always sufficient to avoid negative
stubs and to maintain stability.

A. Remarks on Inhomogeneous Problems

For clarity we have so far concentrated on homogeneous cir-
cuits, but our study also applies to inhomogeneous problems.
As explained in [10], the FDTD values of nodal capacitances
and branch inductances increase proportionally to &, and je,.
respectively. Then the equivalence criteria (12)—(17) define
modified values of branch admittances in TLM. For example,
if relative permeability of the region between nodes P and S
in Fig. 1(a) is increased by a factor of p, then 1Y is given
by (31) instead of (25)

At _ o1

ol = 31

= Z .
Similarly, if relative permittivity of the medium filling cell P
is increased by a factor of ep, then stub oYp is defined by
(32) instead of (30)

cYp = 2% Spep — [24 4Y +1Y]. (32)
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TABLE 1T
ERRORS IN CALCULATING CUTOFF FREQUENCIES OF TE-MODES IN
A CIRCULAR WAVEGUIDE OF R = 1 M BY THE 2-D TLM METHOD

physical values| STAIR-CASE BOUNDARY, r = V2'| NEW BOUNDARY MODEL, r = 2
3f %] 8f [%]

mode fph[GHZ]' R/a =5 R/a = 10} R/a = 20| R/a =5 R/a = 10| R/a = 20

H 0.0879 - 2.39 - 1.02 0 00 011 0 00 Q00

H“ 0.1458 -13 45 - 433 - 1.73 - 104 - 0.29 -0 08

H21 0.1829 * 111 0.57 - 0.74 - 0.20 - 0.09

H:i 0.2005 1z 27 - 2 88 - 059 - 124 - 039 - 0.14

Thus, the stub accounts in a multiplicative way for two
physical factors:

1) increased permittivity of the modeled medium,
2) decreased simulation time-step At (increased 7 for the
fixed medium and spatial discretization a).

B. Practical Advantages of the New Boundary Model

We calculate cutoff frequencies of modes in a circular wave-
guide of radius R, using successively refined discretization a.
For the TM modes, this is a 2-D problem with short boundary
conditions; for the TE modes—a dual 2-D problem with open
boundary conditions. We define an error of the analysis as

e

6
f fph

(33)

where f, fpn are the calculated and physical values of fre-
quency. As in Section 1V, the excitation scheme after [21]
combined with the discrete Fourier transform is used.

First, we consider the TE modes by:

1) standard 2-D TLM with » = +/2 and a staircase bound-

ary model,

2) TLM with r = 2 and the new boundary model.
Results are shown in Table III. For comparable accuracy,
standard TLM requires refinement of the discretization by
a factor of 2-4, and this leads to the increase of computer
memory and time requirements by factors of 4-16 and 8-64,
respectively. On the other hand, our curved boundary model
requires only slight modification of the standard TLM code,
and imposes practically no additional requirements on com-
puter resources. The effect of increased numerical dispersion
due to increased r becomes negligible, in comparison with the
improved boundary representation.

Further, for the TMg; mode (fyr, = 0.1149 GHz for R =
I m) we conduct a systematic convergence study comparing
the following approaches:

1) classical TLM or FDTD based on a regular Cartesian
grid with staircase approximation of the boundary de-
fined only at nodes,

2) classical TLM based on a regular Cartesian grid with
staircase approxim ation of the boundary, with boundary
defined at nodes or bisecting branches,

3) our TLM (FDTD) formulation based on a locally mod-
ified grid,

4) nonorthogonal FDTD [12] based on a globally irregular
grid.
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In{af T T T T T

—©— owr TLM or FDTD on modified grids.

— —O- - nonorthogonal FDTD after {12].

—- 4@ - classical TLM, boundary at nodes or bisecting branches.
e classical TLM or FDTD, boundary defined at nodes.

Fig. 3. Errors in calculating cutoff frequency of the TMgp; circular wave-
guide mode, as a function of discretization.

Errors due to approaches (1)—(4) are plotted in Fig. 3. Applica-
tion of the locally modified grids discussed in this paper leads
to the most accurate FDTD and TLM numerical schemes. In
comparison with nonorthogonal FDTD, these schemes require
approximately half of computer memory and one third of
computing time (for the same number of cells in the model).

In case 1 which involves crude boundary approximation,
results strongly depend on the positioning of the model with
respect to basic grid lines, and we have marked various
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results by dots in Fig. 3. A straight line repeated for classical
FDTD after [12] represents average errors. Results become
unambiguous for refined discretization and improved boundary
models.

VI. CONCLUSION

We have proved formal equivalence between the generalized
TLM (for shunt or expanded node) and FDTD formulations
based on modified grids. Simple rules for transforming circuit
models (from TEM to FDTD and vice versa) and for their
equivalent excitation have been given. It must be emphasized
that these rules clarify many previous misunderstandings con-
cerning relationships between the FDTD and TLM methods,
and their applicability extends far beyond specific topics of
this paper.

Formal equivalence with FDTD reveals the possibility to
control a stability margin in the TLM algorithms. Algorithms
of family r~ with the decreased stability margin reduce the
numerical dispersion errors and computing time for regularly
shaped 3-D microwave circuits. Algorithms of family v+
enable stable incorporation of enhanced models for curved
boundaries. One such a model has been transformed from the
generalized FDTD method into TLM.

According to the authors’ experience, the TLM algorithms
with the new boundary model (as well as the equivalent FDTD
algorithms based on the approach of [10], [11]) are compet-
itive tools for the analysis of irregularly shaped microwave

2
k+1
uN = - 7 r 2 m .
AN S DTS YD DAL SR DAIS (YD DTS 13
Ny Np
NIV D YV
=1 p=1
N, N,
+ZstzV£+l+ZrYNivﬂ (A
s=1 r=1
L 2
’LLN = -
DDAUTI (S DRI CYETD DAGH SYETED DTS VD SUPTT U
N, Np N,
D IYNIVE DY YNV D YNV
=1 p=1 s=1
N, N
+ Y YNIVE ) m YNV (A2)
r=1 m=1
N, N, «r N, N, - N
ltt Zl:lllYN + szlp Nt Zs:l5YN + ZrzerN - Zm:leN ok
N - N N . v N, No» ; N
DITANI SYESD DTS SOITED DA SYETD DASTS (D DR
2
+ N N, Now
S YN + 0 YN + S Y+ e Y+ YN
(A3)
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DT DT D i
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structures. For a circular waveguide considered in this paper,
accurate results have been obtained with only about 10% of
computer resources required by standard TLM or FDTD with
a staircase boundary approximation. In the same example,
the generalized algorithms have been shown more accurate
than the nonorthogonal FDTD method of [12], despite higher
requirements of computer resources of the latter one.

APPENDIX

Consider generalized TLM and FDTD models of Fig. 1(b).
(c). We assume that at time kAt all nodal voltages are equal in
TLM and FDTD, and at time (k-0.5)At—all branch currents.
The values of individual TLM pulses producing these voltages
and currents are unimportant. We also assume that calculations
are conducted with infinite precision.

Step 1 . We shall prove that nodal voltages calculated at
(k + 1)At by the FDTD and TLM algorithms will be equal.

In the TLM algorithm we can express nodal voltage in
terms of incident pulses as in (A1) shown at the bottom of
the preceding page or in terms of reflected pulses as in (A2)
shown at the bottom of the preceding page. We subtract (A2)
from (Al) and take into account (5), (7) as in (A3) also shown
at the bottom of the preceding page. Currents ;i are defined in
the middle of link branches [, currents iy, ~iy—at the short
or tesistively-terminated ends of branches s, r, respectively.
On the other hand, an FDTD equation for node N produces

~ k1
the value iy
a 1
Sk+l Cnaz— 36N 4 L
Uy = a 1 Uy + a IG
Cng +35GN Cnag +3GN

N, N, Np
k405 k+0.5 k405
D TP Y RO > RO (ad)
=1 s=1

r=1

k40.5 -k40.5
N -

In view of our assumption for u’]‘v and all ;2 s sl
k0% we find

“k4+1 k1

Uy T = uy (AS)

if and only if nodal equivalence criteria (12), (13) are satisfied.
Step 2 : We shall prove that currents ;s*t1% in link
branches further calculated by FDTD and TL.M will be equal.
We consider current ;¢ flowing in branch [ from node M to
N. In terms of the TLM pulses we can write

@ = YV - (Vi) (A6)

l,l'ka.S —

YV = (V- (A7)
Thus, updating of TLM branch currents is governed by the
relation

le+0.5 — l’l;k —05 + {Y[u?\,[ _ uk ] (A8)
This is equivalent to updating currents in FDTD if and only
if branch equivalence criterion (14) is met.
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Step 3 : We shall prove that also currents in short- and
resistively-ended branches at (k- 1.5) will be equal in FDTD
and TLM.

Consider branch r incident at node N and terminating in
resistance R. In a special case of R = 0 it reduces to a short-
ended branch s. In TLM algorithm terminal current in this
branch can be expressed as

vigt P = YLV = VA (A9)
P00 = LY VE - VAT (A10)
Additionally we know that
RY —1
PV = Y All
nN RY +17°% (A1
RY +1, 4
ry/k—1 — i 3 k. Al2
T“[/N RT}r —17 N ( )
From (A9)-(A12):
RY -1 -2
k40 5 r k—0 5 — Y 2k A13
T RY 1N YRy AP
5 2, Y 2, Y
k405 _  k—0.5 r _p k=057 _ _ Ar k
PN =iy s R e
(A14)
According to (16) we define an auxiliary node A and obtain
2.Y
. k—0. IS 3
TI’?V+0 5 = riy 0.5 + EY—H[’URN - ’LL?V] (AlS)

If criterion (15) is met. equation (A15) is equivalent to an
FDTD equation.

Step 4 : Resorting to the principle of mathematical induc-
tion, we find that nodal voltages and branch currents at all
successive time-instants are equal in FDTD and TLM.
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